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A triangular Fourier p-element for the analysis of membrane vibrations is
presented. The element's transverse displacement is written in terms of
dimensionless area co-ordinates and is described by three linear shape functions
plus a variable number of trigonometric shape functions. The three nodal
displacements and the amplitudes of the trigonometric functions on the three edges
and in the interior of the element, respectively, are used as generalized co-ordinates.
Inter-element compatibility is achieved by matching the generalized co-ordinates
at the three nodes and the three edges. Results are obtained for a right isosceles
triangular and a square membranes and comparisons are made with exact and
linear triangular "nite element solutions. The results of both membranes con"rm
that the solutions converge very fast from above to the exact values as the number
of trigonometric terms is increased and highly accurate values are obtained with
the use of a very few terms. The results also show that the triangular Fourier
p-element produces a much higher accuracy than the linear triangular "nite
element with fewer system degrees of freedom.

( 2000 Academic Press
1. INTRODUCTION

A triangular Fourier p-element is formulated in terms of trigonometric hierarchical
shape functions and is applied to membrane vibrations. There are a number of
features of the p-version of the "nite element method also known as the hierarchical
"nite element method. The most important feature is that a structure may be
discretized into elements only once and the number of hierarchical terms in each
element is varied. The results can then be obtained to any desired degree of
accuracy by simply increasing the number of hierarchical terms.

The hierarchical rectangular "nite element of Houmat [1] was formulated in
terms of polynomial hierarchical shape functions and was successfully applied to
the vibration of membranes whose boundaries are rectangular co-ordinate lines
and thus represent the most natural shapes for this type of element.

The polynomial hierarchical "nite element method has the drawback that
numerical rounding errors associated with #oating point arithmetic increase with
increasing order of hierarchical function which is basically derived from an
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32 A. HOUMAT
orthogonal polynomial [2]. This limits the use of the method for high-frequency
analysis.

A more promising recent method is the Fourier p-version of the "nite element
method or the trigonometric hierarchical "nite element method. In this method,
trigonometric shape functions are substituted for the orthogonal polynomial shape
functions which are commonly used in the p-version of the "nite element method.
The use of trigonometric shape functions in the hierarchical "nite element method
is not new. Houmat [3] formulated a hierarchical rectangular "nite element in
terms of quintic polynomial shape functions plus trigonometric sine shape
functions and successfully applied it to the analysis of thin plate vibrations. Besin
and Nicholas [4] used only trigonometric sine shape functions and analyzed the
same problem. Bardell et al. [5] proposed the use of mixed Hermite cubic
polynomial shape functions and trigonometric shape functions for the vibration
analysis of coplanar sandwich panels. Leung and Chan [6] recommended the use of
mixed polynomial and trigonometric shape functions. A comprehensive review of
methods applicable to the high-frequency prediction of structures has been
compiled by Langley and Bardell [7].

The Fourier p-version of the "nite element method has been limited currently to
rectangular domains. This paper is intended to show the applicability of the
method to a triangular domain. In the triangular Fourier p-element presented in
this paper, the membrane transverse displacement is described by three linear shape
functions plus a variable number of trigonometric shape functions. The linear shape
functions are used to de"ne the three element nodal displacements and the
trigonometric shape functions are used to provide additional freedom to the three
edges and the interior of the element. The three nodal displacements and the
amplitudes of the trigonometric shape functions on the three edges and in the
interior of the element are used as generalized co-ordinates. Inter-element
compatibility is achieved by matching the generalized co-ordinates at the element
three nodes and three edges. The potential and kinetic energy expressions of
membrane undamped free vibrations are used in conjunction with Lagrange
equations to develop the equations of motion. A Gaussian quadrature technique is
used to evaluate the element sti!ness and mass matrices.

Results of frequency calculations using the triangular Fourier p-element are
given for a right isosceles triangular membrane to show the manner of convergence
of the solutions and the way in which the performance of the element compares
with that of the linear triangular "nite element on a d.o.f. basis. Results are also
given for a square membrane to show the applicability of the element to
membranes of polygonal shape. The two examples were chosen because exact
solutions were available in the literature for comparison.

2. FORMULATION

A triangular membrane element is shown in Figure 1. Also shown in the
"gure are the dimensionless area co-ordinates m
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their values on the three nodes and the three edges (a list of notation is given in
Appendix A).



Figure 1. The element co-ordinates.
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The expressions for the potential energy ; and the kinetic ¹ of the triangular
membrane element have the forms
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where the dot denotes di!erentiation with respect to time, and the parameters a
l

and b
l
are de"ned in terms of the three nodal x and y co-ordinates as
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The transverse displacement w in this element is expressed as
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where w
n

are generalized co-ordinates and f
n
are the following shape functions:
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where
i, j, k"1, 2,2, p (22)

and p is the number of trigonometric terms used along each direction of the three
area co-ordinates.

The indices are de"ned as

n1"3#i, n2"3#p#j, n3"3#2p#j, (23}25)

n4"3#3p#k, n5"3#4p#i, n6"3#5p#k, (26}28)

n7"3#6p#(i!1) p#j, (29)

n8"3#6p#p2#( j!1) p#k, (30)

n9"3#6p#2p2#(i!1)p#k. (31)

The assumed displacement shape functions are divided into three sets. The "rst set
consists of shape functions which de"ne the element three nodal displacements. The
second set consists of shape functions which give additional freedom to the
element's three edges. The third set consists of shape functions which give
additional freedom to the interior of the element.

The hierarchical functions f
n1

, f
n2

,2 , f
n9

possess zero value at the three nodes.
This feature is highly signi"cant since these functions only provide additional
freedom to the three edges and the interior of the element and do not in#uence the
three nodal d.o.f. The hierarchical functions f
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and f
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give additional freedom to

the edge de"ned by the nodes 1 and 2, the hierarchical functions f
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and f
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give
additional freedom to the edge de"ned by the nodes 2 and 3, and the hierarchical
functions f

n5
and f
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give additional freedom to the edge de"ned by the nodes 1 and
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give additional freedom to the interior
of the element. Plots of the "rst six hierarchical functions f
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The vector of generalized co-ordinates w(t) is
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The co-ordinates w
1
, w

2
and w

3
are the element's three nodal displacements. The

co-ordinates w , w , w , w , w , and w are the amplitudes of the hierarchical
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functions on the element's three edges. The co-ordinates w
n7

, w
n8

, and w
n9

are the
amplitudes of the hierarchical functions in the interior of the element. The element's
generalized co-ordinates are shown in Figure 2.

The equations of motion are determined using the following known Lagrange
equations:
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Assuming that the motion is harmonic and inserting the expression for the assumed
displacement "eld (equation (9)) into the element potential and kinetic energy
(equations (1) and (2)) then into Lagrange equations (equations (33)) yields the
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Figure 2. The element generalized co-ordinates.
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equation for undamped free vibration which are
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The coe$cients of the element sti!ness and mass matrices are expressed as
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The order of the element sti!ness and mass matrices is

N"3#6p#3p2. (37)

The integrals are de"ned as
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The above integrals can be put into the following form:
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The above integral can be evaluated exactly by using symbolic computing which is
available through a number of commercial packages [8]. For low order elements
(p)6), the above integral can be evaluated numerically using Gaussian quadrature
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as follows:
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and g
r
and v

r
are, respectively, the abscissas and weight of the integration point r,

and R is the number of integration points which are used to integrate
a one-dimensional function h in the interval (!1, 1) using Gaussian quadrature as
follows:
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Particular boundary conditions can be speci"ed on the three nodes and the three
edges of each element. For each speci"ed boundary condition, the corresponding
row and column must be deleted from the system sti!ness and mass matrices. The
resulting generalized eigenvalue problem can then be solved using any known
technique.

Inter-element compatibility is achieved by assuming that the generalized
co-ordinates w

n1
, w
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, w

n3
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n4
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n5
, and w
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on the element's three edges are

associated with "ctitious nodes n1, n2, n3, n4, n5, and n6, respectively, and so
numbers are assigned to them in the same way as the three real nodes. The
processes of assembly and application of boundary conditions will therefore be
similar to their counterparts in the standard "nite element method and so the
known techniques used in the "nite element method become applicable. This
process has been previously used by Houmat [1].

3. RESULTS

Results of the application of the triangular Fourier p-element to the calculation
of the frequency parameter X are "rst found for a simply supported right isosceles
triangular membrane with orthogonal sides lengths equal to 1.

Exact solutions are available in the literature for this membrane [9]. In order to
see the manner of convergence of the solutions, the membrane is discretized into
one triangular Fourier p-element and the number of trigonometric terms p is
varied. Results for the 10 lowest modes are shown in Table 3 along with the exact
solutions. Table 3 clearly shows that a very fast convergence from above to the
exact values occurs as the number of trigonometric terms in increased from two to
"ve and the values for p"5 are in excellent agreement with the exact ones. In
Table 3, there is an obvious typographical error in reference [9]. The exact value for
the 10th frequency parameter was given as 19)120 when it should have been 19)110.
In fact, 19)110 was found to be the value converged upon by the triangular Fourier
p-element by using "ve or more trigonometric terms.



TABLE 3

Convergence of the 10 lowest frequency parameters X for the right isosceles triangular membrane (the whole membrane is discretized
into one triangular Fourier p-element) as a function of the number of trigonometric terms p

p 1 2 3 4 5 6 7 8 9 10

2 7)0343 9)9643 11)361 12)995 14)756 16)304 18)743 19)336 21)016 22)292
3 7)0252 9)9349 11)328 12)972 14)076 15)739 16)076 17)052 18)834 19)404
4 7)0248 9)9346 11)327 12)953 14)050 15)709 16)022 16)928 18)353 19)123
5 7)0248 9)9346 11)327 12)953 14)050 15)708 16)019 16)918 18)318 19)110

Exact 7)0248 9)9346 11)327 12)953 14)050 15)708 16)019 16)918 18)318 19)110

TABLE 4

Comparison of the 10 lowest frequency parameters X for the right isosceles triangular membrane. Numbers in parenthesis denote the
numbers of system d.o.f.

Type of element 1 2 3 4 5 6 7 8 9 10

Triangular Fourier p-element (12) 7)0343 9)9643 11)361 12)995 14)756 16)304 18)743 19)336 21)016 22)292
Linear triangular element (15) 7)3239 10)8968 12)522 14)958 16)813 18)504 19)401 21)390 23)350 23)557

Triangular Fourier p-element (27) 7)0252 9)9349 11)328 12)972 14)076 15)739 16)076 17)052 18)834 19)404
Linear triangular element (36) 7)1725 10)4124 11)938 13)958 15)493 17)205 17)862 19)374 21)368 22)080

Triangular Fourier p-element (48) 7)0248 9)9346 11)327 12)953 14)050 15)709 16)022 16)928 18)353 19)123
Linear triangular element (55) 7)1277 10)2673 11)758 13)651 15)069 16)783 17)307 18)641 20)529 21)229

Triangular Fourier p-element (75) 7)0248 9)9346 11)327 12)953 14)050 15)708 16)019 16)918 18)318 19)110
Linear triangular element (78) 7)0687 10)1623 11)672 13)392 14)768 16)422 16)980 18)077 20)058 20)698

Exact 7)0248 9)9346 11)327 12)953 14)050 15)708 16)019 16)918 18)318 19)110
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The performance of the triangular Fourier p-element with that of the linear
triangular "nite element on a d.o.f. basis is also investigated. The linear triangular
"nite element represents the special case of the triangular Fourier p-element when
no trigonometric terms are used (p"0). Results for the 10 lowest modes of the right
isosceles triangular membrane are shown in Table 4 along with the exact solutions
and the solutions from the linear triangular "nite element. The number of
trigonometric terms p used in the triangular Fourier p-element are 2, 3, 4, and 5 and
the corresponding numbers of system d.o.f. are 12, 27, 48, and 75 respectively. The
linear triangular "nite element solutions were obtained by discretizing the
triangular membrane into 49, 100, 144, and 196 elements and the corresponding
numbers of system d.o.f. are 15, 36, 55, and 78 respectively. Table 4 clearly shows
that the triangular Fourier p-element solutions are largely more accurate than the
linear triangular "nite element ones despite the use of fewer system d.o.f.

In order to show the applicability of the triangular Fourier p-element to
membranes of polygonal shape, a simply supported square membrane of side
length equal to 2 was considered. Exact solutions are available in the literature for
this membrane [10]. Because of symmetry in geometry and in boundary conditions
and by centering the co-ordinate system it is necessary to consider only
one-quarter. The solution for the entire membrane may be obtained from the
solution for one-quarter with three di!erent sets of boundary conditions on the
symmetry lines. The solutions for the one-quarter will therefore fall into three
groups: symmetric}symmetric modes, symmetric}antisymmetric modes, and
antisymmetric}antisymmetric modes. In order to see the manner of convergence of
the solutions, one-quarter of the membrane is discretized into two identical
triangular Fourier p-elements and an equal number of trigonometric terms p is used
in both elements. Results for the 10 lowest modes are shown in Table 5 along with
the exact solutions. Modes 1, 4, 7, and 10 are symmetric}symmetric modes, modes
2, 5, 6, and 9 are symmetric}antisymmetric modes, and modes 3 and 8 are
antisymmetric}antisymmetric modes. Table 5 clearly shows that a very fast
convergence from above to the exact values occurs as the number of trigonometric
terms p in each element is increased from two to "ve and the solutions for p"5 are
in excellent agreement with the exact ones.

4. CONCLUSION

A triangular Fourier p-element for membrane vibrations has been presented. The
element displacement "eld is written in terms of three dimensionless area
co-ordinates and is described by three linear shape functions plus a variable
number of trigonometric shape functions. The three nodal displacements and the
amplitudes of the trigonometric shape functions on the three edges and in the
interior of the element are used as generalized co-ordinates. Inter-element
compatibility is achieved by matching the generalized co-ordinates at the three
nodes and the three edges.

Results of a right isosceles triangular membrane have shown that the triangular
Fourier p-element solutions converge very fast from above to the exact values as the



TABLE 5

Convergence of the 10 lowest frequency parameters X for the square membrane (one quarter is discretized into two identical triangular
Fourier p-elements) as a function of the number of trigonometric terms p in each element

p 1 2 3 4 5 6 7 8 9 10

2 2)22147 3)51268 4)44512 4)96835 5)66990 6)48333 6)68426 7)03430 7)92269 8)02254
3 2)22144 3)51242 4)44298 4)96732 5)66381 6)47682 6)66449 7)02485 7)85454 8)00978
4 2)22144 3)51241 4)44288 4)96729 5)66359 6)47656 6)66433 7)02482 7)85400 8)00953
5 2)22144 3)51241 4)44288 4)96729 5)66359 6)47656 6)66432 7)02481 7)85398 8)00952

Exact 2)22144 3)51241 4)44288 4)96729 5)66359 6)47656 6)66432 7)02481 7)85398 8)00952
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number of trigonometric terms in increased and highly accurate values are
obtained with the use of a very few terms. Comparisons of the results of the
triangular membrane on a d.o.f. basis have shown that the triangular Fourier
p-element yields a much higher accuracy than the linear triangular "nite element
with fewer system d.o.f. The applicability of the triangular Fourier p-element to
membranes of polygonal shape has been demonstrated by considering a square
membrane discretized into two identical triangular Fourier p-elements and highly
accurate values have been obtained with the use of a very few trigonometric terms
in each element.
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APPENDIX A: NOMENCLATURE

m
1
, m

2
, m

3
dimensionless area co-ordinates

x, y Cartesian co-ordinates
A element surface area
o membrane surface density
S membrane surface tension
t time
w membrane transverse displacement
; element potential energy
¹ element kinetic energy
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K
mn

coe$cients of the element sti!ness matrix
M

mn
coe$cients of the element mass matrix

w vector of generalized co-ordinates
p number of trigonometric terms
N order of element sti!ness and mass matrices
u natural frequency
X "uJo/S, frequency parameter
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